Dr. Shyama Prasad Mukherjee University, Ranchi MSc. (IT), Semester - IV Model Questions

Subject - Automata Theory Paper- ECMIT402

Group-A

- 1. There are ______ tuples in finite state machine.
 - a) 4
 - b) 5
 - c) 6
 - d) unlimited
- 2. Transition function maps.
 - a) Σ * Q -> Σ
 b) Q * Q -> Σ
 c) Σ * Σ -> Q
 d) Q * Σ -> Q
- 3. Finite automata requires minimum _____ number of stacks.
 - a) 1
 - b) 0
 - c) 2
 - d) None of the mentioned
- 4. Regular expression for all strings starts with ab and ends with bba is.
 - a) aba*b*bba
 - b) ab(ab)*bba
 - c) ab(a+b)*bba
 - d) All of the mentioned
- 5. Number of final state require to accept Φ in minimal finite automata.
 - a) 1
 - b) 2
 - c) 3
 - d) None of the mentioned
- 6. The basic limitation of finite automata is that
 - a) It can't remember arbitrary large amount of information.
 - b) It sometimes recognize grammar that are not regular.

- c) It sometimes fails to recognize regular grammar.
- d) All of the mentioned
- 7. Which of the following is a not a part of 5-tuple finite automata?
 - a) Input alphabet
 - b) Transition function
 - c) Initial State
 - d) Output Alphabet
- Which among the following looks similar to the given expression? ((0+1). (0+1)) *
 - a) {xc {0,1} *|x is all binary number with even length}
 - b) {x \in {0,1} |x is all binary number with even length}
 - c) {x { {0,1} *|x is all binary number with odd length}
 - d) {xc {0,1} |x is all binary number with odd length}
- 9. P, O, R be regular expression over \sum , P is not ε , then R=Q + RP has a unique solution:
 - a) Q*P
 - b) QP*
 - c) Q*P*
 - d) (P*O*)*
- 10. Which of the following represents a language which has no pair of consecutive 1's if $\sum = \{0,1\}$?
 - a) (0+10)*(1+ε)
 - b) (0+10)*(1+ε)*
 - c) (0+101)*(0+ε)
 - d) (1+010)*(1+ε)
- 11. The finite automata accept the following languages:
 - a) Context Free Languages
 - b) Context Sensitive Languages
 - c) Regular Languages
 - d) All the mentioned
- 12. Which of the following regular expressions represents the set of strings which do not contain a substring 'rt' if ∑= {r, t}
 - a) (rt)*
 - b) (tr)*
 - c) (r*t*)
 - d) (t*r*)

- 13. Which among the following is equivalent to the given regular expression? 01*+1
 - a) (01)*+1
 - b) 0((1)*+1)
 - c) (0(1)*)+1
 - d) ((0*1)1*)*
- 14. Moore Machine is an application of:
 - a) Finite automata without input
 - b) Finite automata with output
 - c) Non- Finite automata with output
 - d) None of the mentioned
- 15. In mealy machine, the O/P depends upon?
 - a) State
 - b) Previous State
 - c) State and Input
 - d) Only Input
- 16. What is the relation between DFA and NFA on the basis of computational power?a) DFA > NFA
 - b) NFA > DFA
 - c) Equal
 - d) Can't be said
- 17. A language is regular if and only if
 - a) accepted by DFA
 - b) accepted by PDA
 - c) accepted by LBA
 - d) accepted by Turing machine
- 18. Let w= xyz and y refers to the middle portion and |y|>0.What do we call the process of repeating y 0 or more times before checking that they still belong to the language L or not?
 - a) Generating
 - b) Pumping
 - c) Producing
 - d) None of the mentioned

- 19. he Grammar can be defined as: $G=(V, \sum, p, S)$
 - In the given definition, what does S represents?
 - a) Accepting State
 - b) Starting Variable
 - c) Sensitive Grammar
 - d) None of these
- 20. What the does the given CFG defines?
 - S->aSbS|bSaS|e and w denotes terminal
 - a) wwr
 - b) wSw
 - c) Equal number of a's and b's
 - d) None of the mentioned
- 21. A grammar with more than one derivation tree is called:
 - a) Unambiguous
 - b) Ambiguous
 - c) Regular
 - d) None of the mentioned
- 22. Push down automata accepts _____ languages.
 - a) Type 3
 - b) Type 2
 - c) Type 1
 - d) Type 0
- 23. A string is accepted by a PDA when
 - a) Stack is empty
 - b) Acceptance state
 - c) Both (a) and (b)
 - d) None of the mentioned
- 24. NPDA stands for
 - a) Non-Deterministic Push Down Automata
 - b) Null-Push Down Automata
 - c) Nested Push Down Automata
 - d) All of the mentioned
- 25. The value of n if Turing machine is defined using n-tuples:
 - a) 6
 - b) 7

c) 8

d) 5

Group-B

- 1. What do you mean by Finite Automata? Differentiate between DFA and NFA.
- 2. Differentiate between Mealy Machine and Moore Machine.
- 3. Construct a DFA which accepts set of all string containing even number of 0's and even number of 1's. Also draw its transition table.
- 4. What do you understand by Ambiguity in Grammar? Explain with help of an example.
- 5. What is pushdown Automata? Explain with Example.
- Construct Finite Automata that accepts set of all strings with prefix 'ab' over ∑= {a, b}.
- 7. Define Regular Expression. Find Regular Expression of the following transition diagram:

- 8. What is Grammar? Construct grammar for following languages:
 - a) $L(G) = \{ a^{n}b^{n} : n \ge 0 \}$ b) $L(G) = \{ a^{n}ba^{n} : n \ge 1 \}$
- 9. Explain halting problem.
- 10. Explain PCP with help of example.

Group –C

11. What is Chomsky classification of Grammar? Explain with example.

- 12. Design Turing Machine for L= $\{a^n b^n : n \ge 1\}$
- 13. Explain Turing machine. Design Turing machine for L= $\{0^n 1^n 2^n : n \ge 1\}$

	Next state			
Present State	Input a=0		Input a=1	
	State	Output	State	Output
->q1	q ₃	0	q ₂	0
q ₂	q 1	1	q ₄	0
q ₃	q ₂	1	q ₁	1
q ₄	q ₄	1	Q ₃	0

14. What is Mealy Machine? Convert following Mealy Machine to Moore Machine.

- 15. Design PDA for L= $\{a^n b^n : n \ge 1\}$
- 16. Explain derivation tree with example.
- 17. Explain Pumping Lemma for regular sets.